Unduh PDF Unduh PDF Jari-jari bola disingkat menggunakan variabel r atau R adalah jarak dari titik pusat bola ke titik di permukaannya. Sama halnya dengan lingkaran, jari-jari bola adalah bagian penting dari informasi awal yang dibutuhkan untuk menghitung diameter, keliling, luas permukaan, dan/atau volume sebuah bola. Namun, Anda juga bisa membalik perhitungan dari diameter, keliling, dll., untuk mencari jari-jari bola. Gunakan rumus sesuai dengan informasi yang Anda miliki. 1 Cari jari-jari jika diameter diketahui. Jari-jari adalah setengah dari diameter, maka gunakan rumus r = D/2. Rumus ini sama persis dengan cara menghitung jari-jari lingkaran dari diameternya.[1] Jadi, jika sebuah bola memiliki diameter 16 cm, jari-jarinya bisa dihitung dengan 16/2 yaitu 8 cm. Jika diameternya 42, jari-jarinya adalah 21. 2 Cari jari-jari jika keliling diketahui. Gunakan rumus C/2π. Oleh karena keliling sama dengan πD, yang juga sama dengan 2πr, bagi keliling dengan 2π untuk mendapatkan jari-jari.[2] Jika sebuah bola memiliki keliling 20 m, jari-jarinya bisa diperoleh dari 20/2π = 3,183 m. Gunakan rumus yang sama untuk mengonversi antara jari-jari dan keliling sebuah lingkaran. 3 Hitung jari-jari jika volume bola diketahui. Gunakan rumus V/π3/41/3.[3] Volume bola diturunkan dari rumus V = 4/3πr3. Pecahkan variabel r di dalam persamaan ini menjadi V/π3/41/3 = r, artinya jari-jari bola sama dengan volume dibagi dengan π, dikalikan 3/4, lalu semua dipangkatkan 1/3 atau sama dengan akar pangkat 3.[4] Jika sebuah bola memiliki volume 100 inci3, pemecahannya adalah sebagai berikut V/π3/41/3 = r 100/π3/41/3 = r 31,833/41/3 = r 23,871/3 = r 2,88 inci = r 4 Cari jari-jari menggunakan luas permukaan. Gunakan rumus r = √A/4π. Luas permukaan dari sebuah bola diturunkan dari rumus A = 4πr2. Pecahkan variabel r untuk mendapatkan √A/4π = r, artinya jari-jari sebuah bola sama dengan akar kuadrat dari luas permukaan dibagi dengan 4π. Hasilnya juga bisa diperoleh dengan memangkatkan A/4π dengan 1/2.[5] Jika sebuah bola memiliki luas permukaan 1200 cm2, pemecahannya adalah sebagai berikut √A/4π = r √1200/4π = r √300/π = r √95,49 = r 9,77 cm = r Iklan 1 Identifikasi beberapa ukuran dasar sebuah bola. Jari-jari r adalah jarak dari titik pusat sebuah bola ke titik mana pun pada permukaannya. Pada umumnya, Anda bisa mencari jari-jari sebuah bola jika mengetahui diameter, keliling, volume, dan luas permukaannya. Diameter D garis tengah sebuah bola–jari-jari dikalikan dua. Diameter adalah sebuah garis yang melalui titik pusat bola dari satu titik pada permukaan bola ke titik lain pada permukaan bola tepat di seberangnya. Dengan kata lain, diameter adalah jarak terjauh antara dua titik pada sebuah bola. Keliling C jarak terjauh mengelilingi permukaan bola. Dengan kata lain, sama dengan keliling penampang bola yang melalui titik pusat bola. Volume V isi ruang tiga dimensi di dalam sebuah bola. Volume adalah "ruang yang dipenuhi oleh sebuah bola."[6] Luas permukaan A luas dua dimensi pada permukaan bola. Luas permukaan adalah bidang yang meliputi seluruh permukaan bola. Pi π sebuah konstanta yang merupakan rasio dari keliling dan diameter lingkaran. Sepuluh digit pertama Pi adalah 3,141592653, biasanya dibulatkan menjadi 3,14 saja. 2 Gunakan beragam pengukuran untuk mencari jari-jari. Anda bisa menggunakan diameter, keliling, dan luas permukaan untuk menghitung jari-jari sebuah bola. Anda juga bisa menghitung semua dimensi ini jika mengetahui jari-jari bola. Jadi, untuk mencari jari-jari, coba balik rumus-rumus berikut. Pelajari rumus yang menggunakan jari-jari untuk mencari diameter, keliling, volume, dan luas permukaan. D = 2r. Sebagaimana halnya dengan lingkaran, diameter bola adalah dua kali jari-jari. C = πD atau 2πr. Sebagaimana halnya dengan lingkaran, keliling bola sama dengan π dikalikan dengan diameter. Oleh karena diameter adalah dua kali jari-jari, bisa dikatakan bahwa keliling adalah dua kali jari-jari dikalikan π. V = 4/3πr3. Volume sebuah bola adalah jari-jari pangkat tiga dikalikan dirinya sendiri dua kali, dikalikan π, dikalikan 4/3.[7] A = 4πr2. Luas permukaan bola adalah jari-jari kuadrat dikalikan dirinya sendiri, dikalikan π, dikalikan 4. Oleh karena luas lingkaran adalah πr2, bisa dikatakan bahwa luas permukaan lingkaran adalah empat kali luas lingkaran yang membentuk kelilingnya. Iklan 1 Cari koordinat x, y,z dari titik pusat bola. Salah satu cara melihat jari-jari bola adalah sebagai jarak antara titik pusat dengan titik mana pun di permukaan bola. Oleh karena pernyataan ini benar, jika kita mengetahui koordinat titik pusat bola dan titik mana pun pada permukaannya, kita bisa mencari jari-jari bola dengan menghitung jarak antara dua titik menggunakan variasi rumus jarak biasa. Untuk memulainya, cara koordinat titik pusat. Perhatikan bahwa bola adalah objek tiga dimensi, jadi koordinatnya adalah x,y,z ketimbang x,y saja. Proses ini mudah dipahami dengan mengikuti contoh. Sebagai contoh, misalkan ada sebuah bola yang titik pusatnya dalam koordinat x,y,z adalah 4, -1, 12. Dengan beberapa langkah, kita akan menggunakan titik ini untuk mencari jari-jari. 2 Cari koordinat titik pada permukaan bola. Selanjutnya, cari koordinat x,y,z dari titik pada permukaan bola. Titik ini bisa di ambil dari posisi mana pun pada permukaan bola. Oleh karena titik-titik pada permukaan bola jaraknya sama dari titik pusat berdasarkan definisi, titik mana pun bisa dipakai untuk menentukan jari-jari. Sebagai contoh, misalkan kita ketahui titik 3, 3, 0 terletak pada permukaan bola. Dengan menghitung jarak antara titik ini dengan titik pusat, kita bisa mendapatkan jari-jari. 3 Cari jari-jari dengan rumus d = √x2 - x12 + y2 - y12 + z2 - z12. Sekarang setelah Anda mengetahui titik pusat bola dan sebuah titik pada permukaan, Anda bisa menghitung jarak di antara keduanya untuk mendapatkan jari-jari. Gunakan rumus jarak dalam tiga dimensi d = √x2 - x12 + y2 - y12 + z2 - z12; d adalah jarak, x1,y1,z1 adalah koordinat titik pusat, dan x2,y2,z2 adalah koordinat titik pada permukaan yang dipakai untuk menentukan jarak antara dua titik tersebut. Dari contoh, masukkan angka 4, -1, 12 pada x1,y1,z1 dan 3, 3, 0 pada x2,y2,z2, dan pecahkan sebagai berikut d = √x2 - x12 + y2 - y12 + z2 - z12 d = √3 - 42 + 3 - -12 + 0 - 122 d = √-12 + 42 + -122 d = √1 + 16 + 144 d = √161 d = 12,69. Ini adalah jari-jari bola yang kita cari. 4 Ketahui sebagai persamaan umum r = √x2 - x12 + y2 - y12 + z2 - z12. Pada bola, setiap titik pada permukaannya memiliki jarak yang sama dari titik pusat. Jika kita menggunakan rumus jarak di atas dan mengganti variabel "d" dengan variabel "r" untuk jari-jari, kita akan mendapatkan bentuk persamaan untuk mencari jari-jari jika diketahui titik pusat x1,y1,z1 dan titik lain di permukaan x2,y2,z2. Dengan menguadratkan kedua sisi persamaan, kita mendapatkan r2 = x2 - x12 + y2 - y12 + z2 - z12. Perhatikan bahwa rumus ini pada dasarnya sama persamaan dasar bola r2 = x2 + y2 + z2 dengan titik pusat 0,0,0. Iklan Urutan pengerjaan di dalam rumus berpengaruh. Jika Anda tidak tahu pasti urutan pengerjaan tetapi Anda memiliki kalkulator yang dilengkapi dengan tanda kurung, gunakan saja kalkulator tersebut. Artikel ini ditulis berdasarkan permintaan. Namun, jika Anda mencoba untuk memahami geometri ruang untuk pertama kali, lebih baik Anda memulainya dari awal menghitung dimensi-dimensi bola dari jari-jari. Jika Anda bisa mengukur bola di dalam dunia nyata, salah satu cara untuk mendapatkan ukurannya adalah menggunakan air. Pertama-tama, perkirakan ukuran bola yang dimaksud supaya bisa dibenamkan dalam sebuah wadah berisi air dan kumpulkan air yang meluap. Lalu ukur volume air yang meluap. Ubah dari satuan mL ke dalam sentimeter kubik atau satuan lain yang diinginkan, dan gunakan angka ini untuk mencari r dengan persamaan v=4/3*Pi*r^3. Proses ini sedikit lebih rumit daripada mengukur keliling menggunakan pita ukur atau penggaris, tetapi bisa lebih akurat karena kita tidak perlu khawatir jika ukurannya meleset karena kurang tengah. π atau Pi adalah abjad Yunani yang melambangkan rasio antara diameter dengan keliling lingkaran. Konstanta ini adalah bilangan irasional yang tidak bisa dituliskan dalam rasio bilangan bulat. Ada beberapa pecahan yang bisa mendekati; 333/106 bisa mendekati Pi sampai empat desimal. Zaman sekarang, pada umumnya orang menggunakan pembulatan 3,14, yang biasanya cukup memadai untuk keperluan sehari-hari. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Jikadi bagian sendi jari yang terasa ngilu dan kaku terdapat benjolan tak biasa ditambah ada rasa sakit, potensi besar bahwa Anda tengah mengalami osteoarthritis tangan. Cara Mengatasi: Untuk meredakan gejala yang timbul, penting bagi penderita yang memiliki obesitas untuk menurunkan berat badan. Tak hanya itu rajin olahraga juga turut
Ternyata bentuk cone ice cream itu mirip dengan kerucut. Kok bisa? Terus gimana sih caranya menghitung luas dan volume kerucut? Yuk simak selengkapnya di artikel pelajaran Matematika kelas 9 ini! — Siapa di antara kamu yang suka ice cream? Rata-rata dari kamu pasti udah familiar banget kan sama makanan yang satu ini. Biasanya kalo kita beli ice cream ada 2 pilihan, pakai cup atau cone. Kamu termasuk tim yang mana nih, cup atau cone? Hmm kalo aku sih prefer cone karena bisa dimakan habis semuanya hehehe. By the way, kamu tahu nggak awal mula cone ice cream itu dari mana? Nih aku ceritain! jadi ada penjual waffle namanya Ernest Hamwi, dia gulung waffle kering buatannya sampai berbentuk kerucut. Setelah itu, diberikan ke penjual ice cream untuk taruh ice cream di atas cone atau kerucut tersebut. Ide Hamwi ini berhasil loh karena banyak pelanggan yang menyukainya. Nah, cone itu berbentuk kerucut! ngomongin tentang kerucut nih, banyak juga loh benda-benda di sekitar kita yang juga berbentuk kerucut. Misal topi petani atau topi ulang tahun, nasi tumpeng, sampai pembatas jalan traffic cone dan masih banyak lagi. Bisa dibilang kerucut ini berkaitan erat banget ya sama kehidupan kita. Sekarang yuk kita cari tahu lebih lagi tentang kerucut! Kerucut itu termasuk bangun ruang ya! karena berbentuk tiga dimensi, memiliki sisi melengkung sebagai selimut dan alasnya berbentuk lingkaran. Bisa dikatakan bahwa kerucut adalah limas dengan alas berbentuk lingkaran. Nah, kerucut dan tabung itu ada kemiripan loh, sama-sama memiliki alas berbentuk lingkaran. Yuk cek ciri-ciri tabung di sini dulu kalau kamu lupa! Perbedaan antara kerucut dan tabung terdapat pada selimutnya. Selimut kerucut maksudnya adalah sisi tegak kerucut. Kalau kamu masih bingung letak dari sisi, rusuk, dan bagian kerucut lainnya, liat ini dulu dehh! Udah tahu, kan, apa aja bagian dan sifat-sifat dari kerucut. Nah, jadi tinggi kerucut maksudnya jarak dari puncak ke alas kerucut. Sedangkan untuk garis pelukis atau apotema adalah garis yang menghubungkan titik puncak sama titik keliling alas. Nah, r,s dan t berhubungan dan membentuk persamaan pythagoras kayak gini Dari jaring-jaring kerucut yang udah dibahas sebelumnya, kita bisa menentukan rumus luas permukaan dan volume kerucut. Ktia coba bahas satu per satu ya! Baca juga Cara Menghitung Luas dan Volume Bola Cara Menghitung Luas Permukaan Kerucut Untuk luas permukaan kerucut, kita bisa jumlahkan luas semua bangun yang menyusun kerucutnya. Bangun apa aja sih yang dimaksud? Yaa, betul banget! ada juring dan lingkaran. Pokoknya nggak boleh lupa sama kedua bangun ini. Jangan lupa juga nilai π = 3,14 atau 22/7, r = jari-jari alas kerucut, dan s = garis pelukis kerucut. Kalau misalnya kamu udah lupa banget sama rumus luas permukaan kerucut, yaudah kamu bisa bayangin kerucut yang diiris tegak salah 1 bagiannya dari puncak sampai alas, inget ya diiris tegak bukan melintang. Nah, nanti tinggal dijumlahkan luas dari kedua bangun itu, jadi lebih gampang kan ingetnya? Cara Menghitung Volume Kerucut Kamu harus tau nih, kalo volume kerucut itu ⅓ bagian dari volume tabung. Jadi kalo kita ambil ⅓ bagian dari volume tabung, kita bakal dapat rumus volume kerucutnya. “Masih ingat nggak rumus volume tabung?” “Emm volume tabung itu phi r kuadrat dikali tinggi.” Berarti rumus volume kerucutnya gimana dong? Langsung liat ini aja yuk! Perlu diingat, satuan volume kerucut adalah kubik dengan lambang pangkat 3. Misalnya, sentimeter kubik cm³ dan meter kubik m³. Okey, udah banyak banget pembahasan kita kali ini. Mulai dari sifat, unsur sampai rumus-rumus kerucut. Sekarang aku akan bahas satu soal tapi untuk soal kedua, aku mau tantang kalian untuk menyelesaikan sendiri ya! Gimana nih, bisa nggak nyelesain volume kerucutnya? Nah, kalo kamu masih mau bahas soal dan kenalan sama bangun ruang sisi lengkung lainnya, langsung aja ke ruangbelajar! Banyak soal-soal terupdate, lengkap dengan pembahasannya yang bikin pemahaman konsep kamu meningkat. Kalo pemahaman kamu udah oke, pasti soal-soal HOTS dengan variasi apapun bisa kamu selesaikan deh, so tunggu apalagi! Referensi Subchan, dkk. 2018 Matematika SMP/MTs Kelas IX. Jakarta Pusat Perbukuan, Departemen Pendidikan Nasional. Indarsih. 2009 Mempelajari Bangun Ruang Kerucut. Klaten PT Intan Pariwara Artikel ini telah diperbarui pada 25 Oktober 2022
. p95akdmscx.pages.dev/415p95akdmscx.pages.dev/128p95akdmscx.pages.dev/337p95akdmscx.pages.dev/638p95akdmscx.pages.dev/655p95akdmscx.pages.dev/344p95akdmscx.pages.dev/100p95akdmscx.pages.dev/745p95akdmscx.pages.dev/53p95akdmscx.pages.dev/147p95akdmscx.pages.dev/389p95akdmscx.pages.dev/317p95akdmscx.pages.dev/239p95akdmscx.pages.dev/431p95akdmscx.pages.dev/988
jika jari jari kerucut jari jari bola